Get 2 фізика

Get 2 фізика

За умовою завдання, w = w 0 - eD t. ω = 0. w 0 = eD t. тоді ви-

ражение (2) може бути записано так: j = w 0 D t - w 0 D t 2 = w 0 D t 2.

Так як кутова відстань φ = 2π N. w 0 = 2 p n. то число повних обертів одно:

N = n D t 2. N = 12 × 30/2 = 180. Відповідь: M = 1,61 Н × м, N = 180.

Приклад 18. Отримати рівняння гармонійного коливального руху, якщо максимальне прискорення точки 0,493 м / с 2. період коливань 2,0 с і зміщення точки від положення рівноваги в початковий момент часу 2,5 см.

a max = 0,493 м / с 2. T = 2,0 с,

x 0 = 2,5 см = 0,025 м.

Рішення. Рівняння гармонійних коливань має вигляд

x = A cos (w t + j).

Прискорення визначається при цьому як друга похідна координати за часом [1.10]:

a = d 2 x = - A w 2 cos (w t + j). dt 2

Модуль максимального значення прискорення a = a max визна

ляется при cos (w t + j) = ± 1, тому a max = A w 2. звідки амплітуда коливань дорівнює:

З урахуванням того, що w = 2 T p. а також T = 2,0 с, отримаємо:

ω = π рад / с, A = 0,050 м.

ЗАВДАННЯ ДЛЯ ІНДИВІДУАЛЬНИХ ЗАВДАНЬ

1. МЕХАНІЧНА РУХ. КІНЕМАТИКА

1.1. Пасажир електропоїзда, що рухається зі швидкістю 15 м / с, зауважив, що зустрічний поїзд довжиною 210 м пройшов повз нього за 6,0 с. Визначити швидкість зустрічного поїзда.

1.2. Першу чверть шляху мотоцикліст проїхав зі швидкістю 10 м / с, другу - зі швидкістю 15 м / с, третю - зі швидкістю 20 м / с і останню - зі швидкістю 5,0 м / с. Визначити середню швидкість мотоцикліста на всій ділянці шляху.

1.3. Визначити час підйому з метро пасажира, що стоїть на ескалаторі, якщо відомо, що при однаковій швидкості щодо сходинок по нерухомому ескалатору він піднімається за 120 с, а по рухомому - за 30 с.

1.4. Моторний човен пливе по річці з одного пункту в інший і назад. У скільки разів час руху човна проти течії більше часу руху за течією, якщо швидкість течії 2,0 м / с, а швидкість човна в стоячій воді 10 м / с?

1.5. Визначити тривалість польоту літака між двома пунктами, розташованими на відстані 1000 км, якщо дме зустрічний вітер, швидкість якого 25 м / с, а середня швидкість літака відносно повітря 250 м / с. Чому дорівнює час польоту літака при попутному вітрі?

1.6. Визначити час польоту літака між двома пунктами, розташованими на відстані 500 км, якщо швидкість літака відносно повітря 100 м / с, а швидкість зустрічного вітру, спрямованого під кутом 30 ° до напрямку руху, 30 м / с.

1.7. З якою найбільшою швидкістю повинен йти під дощем людина, щоб дощ не потрапляв на ноги, якщо він тримає парасольку на висоті 2,0 м так, що край його виступає вперед на 0,30 м? Краплі дощу падають вертикально зі швидкістю

1.8. Визначити швидкість моторного човна в стоячій воді, якщо при русі за течією річки її швидкість 10 м / с, а при

русі проти течії - 6,0 м / с. Чому дорівнює швидкість течії води в річці?

1.9. Турбореактивний літак за 1,5 год польоту подолав 700 км. Визначити швидкість вітру, якщо його напрямок становить кут 90 ° з напрямом руху літака, швидкість якого щодо повітря 200 м / с.

1.10. Автомобіль рухається зі швидкістю 25 м / с. Протягом 40 м проводиться гальмування, після чого швидкість зменшується до 15 м / с. Вважаючи рух автомобіля равнозамедленно, знайти прискорення і час гальмування.

1.11. Літак для зльоту повинен мати швидкість 100 м / с. Визначити час розбігу і прискорення, якщо довжина розбігу 600 м; рух літака при цьому вважати рівноприскореному.

1.12. Тіло, яке здійснює рівноприскореного руху, проходить однакові відрізки шляху довжиною 15 м відповідно за 2,0 с і 1,0 с. Визначити прискорення і швидкість тіла на початку першого відрізка шляху.

1.13. Визначити час підйому ліфта у висотній будівлі, вважаючи

його рух при розгоні і гальмуванні равнопеременное з прискоренням, рівним по абсолютній величині 1,0 м / с 2. а на середній ділянці - рівномірним зі швидкістю 2,0 м / с. Висота підйому 60 м.

1.14. Визначити початкову швидкість, яку необхідно повідомити кинутому вертикально вгору тіла, щоб воно повернулося назад через 6,0 с. Чому дорівнює максимальна висота підйому?

1.15. У копрі для забивання паль вантаж рівномірно піднімається на висоту 4,9 м за 5,0 с, після чого падає на палю. Визначити, скільки ударів робить вантаж в хвилину.

1.16. Визначити початкову швидкість, з якою тіло кинуто вертикально вгору, якщо на висоті 60 м воно було 2 рази з проміжком у часі 4,0 с. Опір повітря не враховувати.

1.17. Тіло, кинуте вертикально вниз з початковою швидкістю 19,6 м / с, за останню секунду пройшло 1/4 частина всього шляху. Визначити час падіння тіла і його швидкість в момент падіння. З якої висоти кинуто тіло?

1.18. Тіло кинуто вертикально вгору з початковою швидкістю 21 м / с. Визначити час між моментами проходження тілом половини максимальної висоти. Опір повітря не враховувати.

1.19. Матеріальна точка масою 1,0 г рухається по колу

радіуса 2,0 м відповідно до рівняння s = (8 t - 0,2 t 3) м. Знайти

швидкість, тангенціальне, нормальне і повне прискорення в момент часу 3,0 с.

1.20. Тіло обертається рівноприскореному з початковою кутовою швидкістю 5,0 с -1 і кутовим прискоренням 1,0 с -2. Скільки обертів зробить тіло за 10 с?

1.21. Матеріальна точка рухається по колу радіуса 0,50 м. Її тангенціальне прискорення 10 м / с 2. Чому рівні нормальне і повне прискорення в кінці третьої секунди після початку руху? Знайти кут між векторами повного і нормального прискорень в цей момент.

1.22. Автомобіль рухається по заокругленню шосе, що має радіус кривизни 50 м. Закон руху автомобіля виража-

ється рівнянням s = (10 + 10 t - 0,5 t 2) м. Знайти швидкість ав-

автомобіля, його тангенціальне, нормальне і повне прискорення в кінці п'ятої секунди.

1.23. Від літака, що летить горизонтально зі швидкістю 500 м / с, відірвався предмет. Чому рівні нормальне і тангенціальне прискорення предмета через 50 секунд після початку падіння? Опір повітря не враховувати.

1.24. Тіло кинуто зі швидкістю 15 м / с під кутом 30 ° до горизонту. Визначити найбільшу висоту підйому, дальність польоту, радіус кривизни траєкторії в найвищій точці.

1.25. Тіло кинуто зі швидкістю 15 м / с під кутом 30 ° до горизонту. Визначити швидкість тіла, а також його нормальне і тангенціальне прискорення через 2,0 с після початку руху.

1.26. Визначити швидкість кулі, якщо при пострілі з пістолета в горизонтальному напрямку в другому з двох вертикально закріплених аркушів паперу, які перебувають на відстані 20 м, пробоїна виявилася на 5,0 см нижче, ніж в першому.

1.27. Під яким кутом до горизонту кинуто тіло, якщо відомо, що максимальна висота підйому дорівнює 1/4 частини дальності польоту? Опір повітря не враховувати.

1.28. З вежі висотою 19,6 м в горизонтальному напрямку кинуто тіло зі швидкістю 10 м / с. Записати рівняння траєкторії тіла. Чому дорівнює швидкість тіла в момент падіння? Який кут утворює ця швидкість з горизонтальним напрямком? Опором повітря знехтувати.

1.29. З однієї точки одночасно кинуті два тіла з однаковою швидкістю під різними кутами до горизонту. Визначити відстань між тілами через 2,0 с після початку движе-

ня, якщо початкова швидкість 10 м / с, а кути кидання

1.30. На якій висоті вектор швидкості тіла, кинутого під кутом 45 ° до горизонту з початковою швидкістю 20 м / с, становитиме з горизонтом кут 30 °? Опір повітря не враховувати.

1.31. З вершини гори кинуто тіло в горизонтальному напрямку зі швидкістю 19,6 м / с. Визначити тангенціальне і нормальне прискорення тіла через 2,0 с після початку руху.

1.32. Через скільки секунд вектор швидкості тіла, кинутого під кутом 60 ° до горизонту з початковою швидкістю 20 м / с, становитиме з горизонтом кут 30 °? Опір повітря не враховувати.

1.33. Матеріальна точка рухається по колу, діаметр якої 40 м. Залежність шляху, пройденого точкою, від часу виражається рівнянням s = (t 3 + 4 t 2 - t + 8) м. Визна

лити пройдений шлях, кутову швидкість і кутове прискорення точки через 3,0 с від початку її руху.

1.34. Тіло кинуто вертикально вгору з початковою швидкістю 4,0 м / с. Коли воно досягло верхньої точки польоту, з того ж початкового пункту з тієї ж початковою швидкістю вертикально вгору кинуто друге тіло. На якій відстані від початкового пункту зустрінуться тіла? Опір повітря не враховувати.

1.35. Матеріальна точка рухається прямолінійно з прискоренням 5,0 м / с 2. Визначити, на скільки шлях, пройдений точкою в n -у секунду, буде більше шляху, пройденого в попередню секунду. Прийняти початкову швидкість дорівнює нулю.

1.36. Дві автомашини рухаються по дорогах, кут між якими 60 °. Швидкість автомашин 54 км / год і 72 км / год. З якою швидкістю віддаляються машини одна від одної?

1.37. Матеріальна точка рухається прямолінійно з початковою швидкістю 10 м / с і постійним прискоренням -5,0 м / с 2. Визначити, у скільки разів шлях, пройдений матеріальною точкою, буде перевищувати модуль її переміщення через 4,0 с після початку відліку часу.

1.38. Велосипедист їхав з одного пункту в інший. Першу третину шляху він проїхав зі швидкістю 18 км / ч. Далі половину часу, що залишився він їхав зі швидкістю 22 км / год, після чого до кінцевого пункту він йшов пішки зі швидкістю 5,0 км / год. Визначити середню швидкість велосипедиста.

1.39. Тіло кинуто під кутом 30 ° до горизонту зі швидкістю 30 м / с. Які будуть нормальне і тангенціальне прискорення тіла через час 1,0 с після початку руху?

1.40. Матеріальна точка рухається по колу з постійною кутовою швидкістю π / 6 рад / с. У скільки разів шлях, пройдений точкою за час t = 4,0 с, буде більше модуля її переміщення? Прийняти, що в момент початку відліку часу радіус-вектор, що задає положення точки на колі, щодо вихідного положення був повернений на кут π / 3 рад.

1.41. Матеріальна точка рухається в площині XY згідно

Схожі статті